In b we need to find:

It's important to recal that the secant is equal to:

Another important property that will be useful is:

Where m is any integer. Let's see if we can write 18*pi using this. We can take x=0 so we have:

If we divide both sides by 2*pi:

Since m is an integer then we can assure that:

Then the secant is given by:

So the answer to b is 1.
In c we need to find:

Here we can use the following properties in order to write those angles as angles of the first quadrant:

So we have:

If we convert these two angles from radians to degrees by multiplying 360° and dividing by 2*pi we have:

And remeber that:

So we get:

Then we can use a table of values:
Then:
![\sin ((7\pi)/(6))\tan ((8\pi)/(3))=\sin (30^(\circ))\cdot\tan (60^(\circ))=(1)/(2)\cdot\sqrt[]{3}=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/h1l65p2lg9z1ry44x7qwm3zbncunjbja2z.png)
So the answer to c is (√3)/2.
In d we need to find:

In order to do this using the table we can use the following:

So from the first one we have:

We convert pi/12 into degrees:

So we need to find the sine and cosine of 15°. We use the second equation:

Then we use the third:
![\begin{gathered} \cos (30^(\circ))=\frac{\sqrt[]{3}}{2}=\cos (2\cdot15^(\circ))=\cos ^215^(\circ)-\sin ^215^(\circ) \\ \frac{\sqrt[]{3}}{2}=\cos ^215^(\circ)-\sin ^215^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mp5ikjm75qx3zdqjic8ip2rxktouhlynj0.png)
And from the fourth equation we get:

We can use this in the previous equation:
![\begin{gathered} \frac{\sqrt[]{3}}{2}=\cos ^215^(\circ)-\sin ^215^(\circ)=\cos ^215^(\circ)-(1-\cos ^215^(\circ)) \\ \frac{\sqrt[]{3}}{2}=2\cos ^215^(\circ)-1 \\ \cos 15^(\circ)=\sqrt{\frac{1+\frac{\sqrt[]{3}}{2}}{2}} \\ \cos 15^(\circ)=\sqrt{(1)/(2)+\frac{\sqrt[]{3}}{4}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z5vqcouglmwa0ebw1zw3q4p52vdeoju817.png)
So we found the cosine. For the sine we use the expression with the sine and cosine multiplying:
![\begin{gathered} \sin 15^(\circ)\cos 15^(\circ)=(1)/(4) \\ \sin 15^(\circ)\cdot\sqrt[]{(1)/(2)+\frac{\sqrt[]{3}}{4}}=(1)/(4) \\ \sin 15^(\circ)=\frac{1}{4\cdot\sqrt[]{(1)/(2)+\frac{\sqrt[]{3}}{4}}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sblauksegx0i6rkvegs21swoi0hvinokma.png)
Then the tangent is:
![\tan (15^(\circ))=(\sin(15^(\circ)))/(\cos(15^(\circ)))=\frac{1}{4\cdot\sqrt[]{(1)/(2)+\frac{\sqrt[]{3}}{4}}}\cdot\frac{1}{\sqrt[]{(1)/(2)+\frac{\sqrt[]{3}}{4}}}=(1)/(4)\cdot\frac{1}{(1)/(2)+\frac{\sqrt[]{3}}{4}}](https://img.qammunity.org/2023/formulas/mathematics/college/1q858glyhde302j3hlovix9cg0h7js952x.png)
![\tan (15^(\circ))=(1)/(4)\cdot\frac{1}{(1)/(2)+\frac{\sqrt[]{3}}{4}}=\frac{1}{2+\sqrt[]{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/r5a5ib8ekmg2rsw6xaxtzxefib933sw7mx.png)
Then the answer to d is:
![\frac{1}{2+\sqrt[]{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/8zh56z32n9y62h9bvr0eex2alb2ttc58tt.png)