Given:
![f(x)=\log_5x](https://img.qammunity.org/2023/formulas/mathematics/college/f53kvyptleasskedquv72o8rflxmsutz80.png)
Required: Function values at x = 1/5, 1, 5, and 25.
Step-by-step explanation:
Use the logarithmic properties
![\log_b1=0,\log_b(A)/(B)=\log_bA-\log_bB,\log_bb=1,\log_bb^n=n](https://img.qammunity.org/2023/formulas/mathematics/college/zxexin00q225upe4q5ycxvah5epzdwq3p0.png)
To find f(1/5), substitute 1/5 for x into f(x).
![\begin{gathered} f((1)/(5))=\log_5((1)/(5)) \\ =\log_51-\log_55 \\ =0-1 \\ =-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gl0xjmtooxbs6b3yfimgn4zdlthg767ysx.png)
To find f(1), substitute 1 for x into f(x).
![\begin{gathered} f(1)=\log_51 \\ =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vhfan8csswsnp2l37hh1tqqi719w2wl1p7.png)
To find f(5), substitute 5 for x into f(x).
![\begin{gathered} f(5)=\log_55 \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4uoj7v3dpma6250krpuzf4bcxii8bj8vw7.png)
To find f(25), substitute 25 for x into f(x).
![\begin{gathered} f(25)=\log_525 \\ =\log_55^2 \\ =2\log_55 \\ =2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e07hmzypy0niqdl10cuojus879rx4h9k8s.png)