It is important to know that the sample would be the starters and the population is all members.
So, let's use the mean formula to find the mean sample
![\bar{x}=(\Sigma(x))/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/uy8qb8r381riejoh0aukre7sp3cx5h9yi3.png)
Where n = 21.
Now, we have to add all the heights of the starter players.
![\begin{gathered} \Sigma(x)=75+81+72+84+79+68+77+84+79+78+83+76+83+71+80+75+77+84+77+80+75 \\ \Sigma(x)=1638 \end{gathered}]()
Then, we divide
![\bar{x}=(1638)/(21)=78](https://img.qammunity.org/2023/formulas/mathematics/college/pmfv0y760nl9lz5vekn1sy56s7c0rpnfi5.png)
Therefore, the mean sample is 78 inches.
Now, let's find the population mean using all team data instead
![\mu=(\Sigma(x))/(N)](https://img.qammunity.org/2023/formulas/mathematics/college/7vihk08v0c9boc07qne0vnj8c3cs5l85i9.png)
Where N = 35. Let's do the same process.
![\begin{gathered} \mu=(75+80+69+77+70+77+68+81+80+77+80+84+72+69+79+84+75+78+84+76+79+83+72+77+75+76+79+84+78+76+71+83+75+69+77)/(75) \\ \mu=(2689)/(35)=76.83 \end{gathered}]()
Therefore, the mean population is 76.83 inches.