According to the given graph, the angles are linear pairs because they are on a straight angle, so the must sum 180°. Having said that, we express the following.-
![(4x+20)+(x-10)=180](https://img.qammunity.org/2023/formulas/mathematics/college/13tkiqvogl1mggbr5yebpj9hphxlzg6u44.png)
We reduce like terms
![5x+10=180](https://img.qammunity.org/2023/formulas/mathematics/college/4txuozjsyf0bvl71jghwtkgwwr4f9wq6v0.png)
Then, we subtract 10 on each side.
![\begin{gathered} 5x+10-10=180-10 \\ 5x=170 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jj41st1ogudcpzohoes8051bthoz6b1d9y.png)
At last, we divide the equation by 5.
![\begin{gathered} (5x)/(5)=(170)/(5) \\ x=34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wpdcwmqctwlf6try8mr1256lj2h7q1hcz5.png)
We use this value to find the angles.
![\begin{gathered} 4x+20=4(34)+20=136+20=156 \\ x-10=34-10=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sy1exvqrodj7qp77xfkz8ebmtrhad96c30.png)
Therefore, x is equal to 34, and the angles are 156° and 24°.