Given:
Mass of copper, m = 3.152 g = 0.003152 kg
Resistance = 2,473.562 ohms
Density of copper = 8900 kg/m³
Resistivity of copper = 1.7 x 10⁻⁸ ohm.m
Let's find the diameter of the wire.
Apply the density formula to find the volume:
![\begin{gathered} \rho=(m)/(v) \\ \\ v=(m)/(\rho)=(0.003152)/(8900) \\ \\ v=3.54*10^(-7)\text{ m}^3 \\ \\ (\pi r^2)l=3.54*10^(-7)\text{ m}^3 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ofm2du1fh6gy1njcm259w7p82iwcpgp2qq.png)
Now, apply the formula:
![\begin{gathered} R=(\rho l)/(A) \\ \\ l=(RA)/(\rho) \\ \\ l=(2473.562*\pi r^2)/(1.7*10^(-8)) \\ \\ (l)/(\pi r^2)=(2473.562)/(1.7*10^(-8)) \\ \\ (l)/(\pi r^2)=1.455*10^(11) \\ \\ l=1.455*10^(11)*\pi r^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9yr891mrcwuaggtrcss2latu8pc82svv9g.png)
Now, combine both expressions for L:
![1.455*10^(11)*\pi r^2*\pi r^2=3.54*10^(-7)](https://img.qammunity.org/2023/formulas/physics/college/v1tg9xmufm6lpmfkgvtoxd771ewh8bweqw.png)
Solving further:
![\begin{gathered} (\pi r^2)^2=(3.54*10^(-7))/(1.455*10^(11)) \\ \\ (\pi r^2)=\sqrt{2.434*10^(-18)} \\ \\ \pi r^2=1.56*10^(-9) \\ \\ r^2=(1.56*10^(-9))/(\pi) \\ \\ r=\sqrt{(1.56*10^(-9))/(\pi)} \\ \\ r=2.228*10^(-5) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/deu4zy42tt2h6ff769bqkmbylbrvz4wpgi.png)
r is the radius.
We know that:
Diameter = 2 x radius
Thus, we have:
![\begin{gathered} d=(2.228*10^(-5))*2 \\ \\ d=4.4569*10^(-5)\text{ m} \\ \\ d=0.044569*10^(-3)m \\ \\ d=0.0446\text{ mm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/equaal8tiqliune1clyo2ltydwe4lhnl66.png)
Therefore, the diameter in mm will be 0.0446 mm
ANSWER:
0.0446 mm