147k views
0 votes
Solve right triangle ABC for all missing parts. Express angles in decimal degrees.a = 200.7 km, c= 401.5 kmRound to the nearest hundred

Solve right triangle ABC for all missing parts. Express angles in decimal degrees-example-1

1 Answer

4 votes

Using the Pythagorean Theorem we get:


c^2=a^2+b^2\text{.}

Therefore:


b^2=c^2-a^2\text{.}

Substituting a=200.7km and c=401.5km we get:


b^2=(401.5km)^2-(200.7km)^2.

Solving the above equation for b we get:


\begin{gathered} b=\sqrt[]{(401.5km)^2-(200.7km)^2} \\ =\sqrt[]{161202.25km^2-40280.79km^2} \\ =\sqrt[]{120921.76km^2}\approx347.74km\text{.} \end{gathered}

Now, from the given diagram we get that:


\begin{gathered} \cos B=(a)/(c), \\ \sin A=(a)/(c)\text{.} \end{gathered}

Substituting a=200.7km and c=401.5km we get:


\begin{gathered} \cos B=\frac{200.7\operatorname{km}}{401.5\operatorname{km}}=(2007)/(4015)\text{.} \\ \sin A=\frac{200.7\operatorname{km}}{401.5\operatorname{km}}=(2007)/(4015)\text{.} \end{gathered}

Therefore:


\begin{gathered} B=\cos ^(-1)((2007)/(4015))\approx60.00^(\circ), \\ A=\sin ^(-1)((2007)/(4015))\approx30.00^(\circ), \end{gathered}

Answer:


\begin{gathered} b=347.74\operatorname{km}, \\ B=60.00^(\circ), \\ A=30.00^(\circ) \end{gathered}

User Perty
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories