Step-by-step explanation:
Given the equation:
![y=(1)/(2)x+(11)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/rpenjz24f1gji96pw9m2l1qj4tcalfsn2s.png)
Comparing it with the slope-intercept form: y=mx+b
![\text{Slope,m}=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/8s4f3ix7avqreedtv4s2kygg48ncri64r7.png)
Definition: Two lines are perpendicular if the product of the slopes is -1.
Let the slope of the new line = n
![\begin{gathered} (1)/(2)n=-1 \\ n=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ylynpyssiosod6bgdqs1dss5hdf34p669.png)
Substitute the slope, -2 and point (4,-5) in the slope-point form:
![\begin{gathered} y-y_1=m(x-x_1) \\ y-(-5)=-2(x-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9bfupb8127g53sdumz50eiz98kpc62qps8.png)
We then express it in the slope-intercept form:
![\begin{gathered} y+5=-2x+8 \\ y=-2x+8-5 \\ y=-2x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m0mwt782gfnk53sapgodegl81gj5po4w7b.png)
The equation of the perpendicular line is y=-2x+3.
Answer:
![y=-2x+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/8rtcwxdfz0uecpm44ag9dzk1bxozaaklsm.png)