For us to be able to determine the distance along an arc on the surface of the earth, we will be using the following formula:
![\text{ S = r}\theta](https://img.qammunity.org/2023/formulas/mathematics/college/59i76gj8adfrz82ilzb4zsiylswzzkb4qf.png)
Where,
S = arc length
r = radius (radius of the earth)
θ = central angle (in radian)
Given:
r = 3960 miles
θ = 48 mins.
a.) Let's convert the given measure of the central angle to radian.
![\theta=48mins.\text{ = (48 mins.) x }\frac{1^(\circ)}{(60\text{ mins.})}\text{ = }(48)/(60)(1^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/college/o1tbfwk49dmtogrnp1n0w3eu95tjaqz7lz.png)
![\theta\text{ = }(4)/(5)^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/pblq2ms34zqo78pf454xs9xhxa556of327.png)
![\text{ }\theta_(radian)\text{ = }\theta_(degrees)\text{ x }(\pi)/(180^(\circ))](https://img.qammunity.org/2023/formulas/mathematics/college/w9ivnp5qws3k7hd8hh0byugsu2x18z3avf.png)
![\text{ }\theta_(radian)\text{ = }(4)/(5)\text{ x }(\pi)/(180)\text{ = }(4\pi)/(900)\text{ = }(\pi)/(225)\text{ radians}](https://img.qammunity.org/2023/formulas/mathematics/college/m4ohyeze1kp5k21d8skbb6hgbanf0reyz3.png)
b.) Let's now determine the distance (arc length).
![\text{ S = r}\theta](https://img.qammunity.org/2023/formulas/mathematics/college/59i76gj8adfrz82ilzb4zsiylswzzkb4qf.png)
![\text{ S = (3960)(}(\pi)/(225)\text{ ) = }(3960\pi)/(225)\text{ miles = 17.6}\pi\text{ miles = 55.2920307 }\approx\text{ 55.292 miles}](https://img.qammunity.org/2023/formulas/mathematics/college/bju7enb4xfxggfthkyiv4oddnujj7gg0mk.png)
Therefore, the answer is 55.292 miles.