Let's determine if g(x) is a factor of f(x).


Given that g(x) = x - 2, at x = 2, let's check the value of f(x) at x = 2, If f(x) = 0, then g(x) is a factor, otherwise, g(x) is not a factor of f(x).
We get,
At x = 2,

Therefore, g(x) is a factor of f(x).