Given: The coordinates of triangle ABC as
![\begin{gathered} A=(1,-4) \\ B=(4,-5) \\ C=(6,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bv5qbdpy747ysi68tzjcuq4jlpwpzp27td.png)
To Determine: The coordinates of triangle ABC after first reflect over the y-axis and then over the x-axis
Solution
The reflection over the y-axis rule is given as
![(x,y)\rightarrow(-x,y)](https://img.qammunity.org/2023/formulas/mathematics/college/ikcitr9ov18gnuy0131ezdtc936qt485rg.png)
Let us apply the rule to the given triangle ABC
![\begin{gathered} A(1,-4)\rightarrow A^(\prime)(-1,-4) \\ B(4,-5)\rightarrow B^(\prime)(-4,-5) \\ C(6,-3)\rightarrow(-6,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/30ysyj4icihsidg7g5ivhj6hkhs5xl4o65.png)
The reflection rule over the x-axis is given as
![(x,y)\rightarrow(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/d7a29ae1nc5itoub5zbvfqbwxpczq9rzr6.png)
Let us apply the rule to the given
![\begin{gathered} A^(\prime)(-1,-4)\rightarrow A^(\prime)^(\prime)(-1,4) \\ B^(\prime)(-4,-5)\rightarrow B^(\prime)^(\prime)(-4,5) \\ C^(\prime)(-6,-3)\rightarrow C^(\prime)^(\prime)(-6,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/84xkpfybtrqqxzpt0aa4fauqulw8o549qh.png)
Hence, the new point of A'' = (-1, 4)