63.0k views
1 vote
ANSWER QUESTION 3 PHOTO ATTACHEDFAST REPLY = BETTER RATINGTHANK YOU!

ANSWER QUESTION 3 PHOTO ATTACHEDFAST REPLY = BETTER RATINGTHANK YOU!-example-1
User Rivasa
by
5.1k points

1 Answer

4 votes

Given


f(x)=xe^(7x)

Calculate the second derivative of f(x), as shown below


\begin{gathered} \Rightarrow f^(\prime)(x)=e^(7x)+7xe^(7x) \\ and \\ \Rightarrow f^(\prime)^(\prime)(x)=7e^(7x)+7(e^(7x)+7xe^(7x)) \\ \Rightarrow f^(\prime)^(\prime)(x)=14e^(7x)+49xe^(7x) \end{gathered}

Then, find the interval such that f''(x)>0 in order to find where f(x) is concave up,


\begin{gathered} 14e^(7x)+49xe^(7x)>0 \\ \Rightarrow2e^(7x)+7x*e^(7x)>0 \\ and \\ e{}^(7x)>0,x\in\Re \end{gathered}

Then,


\begin{gathered} 2e^(7x)>-7xe^(7x) \\ \Rightarrow2>-7x \\ \Rightarrow x>-(2)/(7) \end{gathered}

Therefore, f(x) is concave up when x in (-2/7, +infinite).

In the case of concavity down,


\begin{gathered} f^(\prime)^(\prime)(x)<0 \\ \Rightarrow2e^(7x)+7x*e^(7x)<0 \\ \Rightarrow2+7x<0 \\ \Rightarrow-(2)/(7)>x \end{gathered}

Thus, f(x) is concave down when x in (-infinite, -2/7).

The answer is the fifth and last option (top to bottom).

User SadSido
by
5.5k points