Given
![f(x)=xe^(7x)](https://img.qammunity.org/2023/formulas/mathematics/college/dvezyudqln2q9dsev80a5nf0bltiy9u8mj.png)
Calculate the second derivative of f(x), as shown below
![\begin{gathered} \Rightarrow f^(\prime)(x)=e^(7x)+7xe^(7x) \\ and \\ \Rightarrow f^(\prime)^(\prime)(x)=7e^(7x)+7(e^(7x)+7xe^(7x)) \\ \Rightarrow f^(\prime)^(\prime)(x)=14e^(7x)+49xe^(7x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6iaywyyqjpk3clf5c5w5b06ze0qr1fqsgz.png)
Then, find the interval such that f''(x)>0 in order to find where f(x) is concave up,
![\begin{gathered} 14e^(7x)+49xe^(7x)>0 \\ \Rightarrow2e^(7x)+7x*e^(7x)>0 \\ and \\ e{}^(7x)>0,x\in\Re \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x8b5fykyejnxxbm8c1mrgd365x3grjdshe.png)
Then,
![\begin{gathered} 2e^(7x)>-7xe^(7x) \\ \Rightarrow2>-7x \\ \Rightarrow x>-(2)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vag2vel224xlhahcpgu4m64u0dcz2hv9k0.png)
Therefore, f(x) is concave up when x in (-2/7, +infinite).
In the case of concavity down,
![\begin{gathered} f^(\prime)^(\prime)(x)<0 \\ \Rightarrow2e^(7x)+7x*e^(7x)<0 \\ \Rightarrow2+7x<0 \\ \Rightarrow-(2)/(7)>x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hbshw871oxa6r2pr95ero63ksfmnhe5o8w.png)
Thus, f(x) is concave down when x in (-infinite, -2/7).
The answer is the fifth and last option (top to bottom).