We can find the inverse function writing f(x) as y in the original function and then changing x with y and isolating y again, so
![y=\sqrt[]{x}-5](https://img.qammunity.org/2023/formulas/mathematics/college/6o6sbdmljs940z8tpoxp3mhtm9c25t1xua.png)
Changing y with x we have
![x=\sqrt[]{y}-5](https://img.qammunity.org/2023/formulas/mathematics/college/jara5tth47gmp1fhpa5bsogevga7du2nun.png)
Now we must get y on one side of the equation again, then
![\begin{gathered} x=\sqrt[]{y}-5 \\ x+5=\sqrt[]{y} \\ (\sqrt[]{y})^2=(x+5)^2 \\ y=(x+5)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tbpw259hqo0sg3lfqb0wt5v6upsbyypvwe.png)
The domain of the inverse function in the image of the original function f, the image of f is x ≥ -5, then the domain of the inverse of will be x ≥ -5, so our answer is
