19)
The given system of equations is,
![\begin{gathered} 4x-3y=11 \\ 5x-2y=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e1l69gi0816rhikpnu2z6tmszj6riso0uy.png)
The above system of equations can be written in matrix form as,
![\begin{bmatrix}{4} & {-3} & {} \\ {5} & {-2} & {} \\ {} & {} & \end{bmatrix}\begin{bmatrix}{x} & {} & {} \\ {y} & & {} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{11} & {} & \\ {12} & {} & \\ {} & {} & \end{bmatrix}\text{ -----(1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q8c6nn6pta39u495tr4iebtvvecew78ond.png)
Here,
![A=\begin{bmatrix}{4} & {-3} & {} \\ {5} & {-2} & {} \\ {} & {} & \end{bmatrix},\text{ X=}\begin{bmatrix}{x} & {} & {} \\ {y} & & {} \\ {} & {} & \end{bmatrix}\text{ },\text{ B=}\begin{bmatrix}{11} & {} & \\ {12} & {} & \\ {} & {} & \end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/el36meufbdak9d4nxhnnr9kalchhqv4bxa.png)
Therefore, equation (1) can be written as,
![AX=B](https://img.qammunity.org/2023/formulas/mathematics/college/w8vhgpigm8tn4vqtkq11f0nj3s9jvpktfi.png)
Therefore,
![X=A^(-1)B\text{ -------(2)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zzu2pldm7s92ho631aqlximitqit0i6x7u.png)
Now, we need to calculate the inverse of A.
(Note:
Let a 2x2 matrix P is of the form given below.
![P=\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {} \\ {} & {} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l1xyymz5o6up12k2cduuact5yex5pxdr7i.png)
The inverse of the matrix P is,
![\begin{gathered} P^(-1)=(1)/(|P|)\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & {} \\ {} & {} & {}\end{bmatrix} \\ =(1)/(ad-bc)\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z7lk1rqgajmmsz7axlguqhust8u21mnv78.png)
)
Similar to the inverse matrix of 2x2 matrix P, the inverse matrix of A can be written as,
![\begin{gathered} A^(-1)=(1)/(4*(-2)-(-3)*5)\begin{bmatrix}{-2} & {3} & {} \\ {-5} & {4} & {} \\ {} & {} & {}\end{bmatrix} \\ =(1)/(-8+15)\begin{bmatrix}{-2} & {3} & {} \\ {-5} & {4} & {} \\ {} & {} & {}\end{bmatrix} \\ =(1)/(7)\begin{bmatrix}{-2} & {3} & {} \\ {-5} & {4} & {} \\ {} & {} & {}\end{bmatrix} \\ =\begin{bmatrix}{(-2)/(7)} & {(3)/(7)} & {} \\ {(-5)/(7)} & {(4)/(7)} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/conz6phnn244kpb50kttwf9czm1z1xwaxc.png)
Now, put the values in equation (2) to find the solution to the system of equations.
![\begin{gathered} X=A^{-1^{}}B \\ \begin{bmatrix}{x} & {} & {} \\ {y} & & {} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{(-2)/(7)} & {(3)/(7)} & {} \\ {(-5)/(7)} & {(4)/(7)} & {} \\ {} & {} & {}\end{bmatrix}\begin{bmatrix}{11} & {} & \\ {12} & {} & \\ {} & {} & \end{bmatrix} \\ =\begin{bmatrix}{(-2)/(7)*11+(3)/(7)*12} & {} & {} \\ {(-5)/(7)*11+(4)/(7)*12} & & {} \\ {} & {} & {}\end{bmatrix} \\ =\begin{bmatrix}{(-22)/(7)+(36)/(7)} & {} & {} \\ {(-55)/(7)+(48)/(7)} & & {} \\ {} & {} & {}\end{bmatrix} \\ =\begin{bmatrix}{(-22+36)/(7)} & {} & {} \\ {(-55+48)/(7)} & & {} \\ {} & {} & {}\end{bmatrix} \\ =\begin{bmatrix}{(14)/(7)} & {} & {} \\ {(-7)/(7)} & & {} \\ {} & {} & {}\end{bmatrix} \\ \begin{bmatrix}{x} & {} & {} \\ {y} & & {} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{2} & {} & {} \\ {-1} & & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h64gycv8fwoec4haac6lc2tosy6zw2o0zp.png)
Therefore, the solution to the system of equations using inverse matrix is x=2 and y=-1.