SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given values
![\begin{gathered} Total\text{ payment}=242000 \\ down\text{ payment}=55\% \\ rate\text{ for compunding}=8.2\%=(8.2)/(100)=0.082 \\ n=2\text{ since it is compounded semi-annually} \\ t=5\text{ years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4bcdkmt1nlkutbwy413z2tcbf2lmfdod75.png)
STEP 2: Find the mortgage value
![mortgage\text{ }value=Total\text{ payment}-Down\text{ payment}](https://img.qammunity.org/2023/formulas/mathematics/college/b0o2svfh5rq0xrszpdnt4jff12bx7f0b0z.png)
Down payment will be calculated:
![\begin{gathered} 55\%\text{ of \$242000} \\ (55)/(100)\cdot242000=0.55\cdot242000=\text{ \$}133100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwhi1lnrhuxjo1lcozukloex7v7hzulj5e.png)
To calculate the mortgage value, we first calculate the compounded amount,
![\begin{gathered} A = P(1 + (r)/(n))^(nt) \\ A=108900\cdot(1+(0.082)/(2))^(2\cdot5) \\ A=108900\cdot(1.041)^(10) \\ A=162755.3131\approx\text{ \$}162755.31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b0a6yizrozr3qpntjzwqulzxm004f53w8b.png)
Hence, the mortgage value will be approximately $162755.31
Then we calculate the monthly payments
Number of months between 25 years will be:
![\begin{gathered} 1\text{ year}=12\text{ months} \\ 25\text{ years}=25\cdot12=300\text{ months} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vawhq9uaacpi5xh87cl29fex9qg4ipfy8x.png)
Therefore, the monthly payments will be:
![\text{ }\frac{\text{ \$}162755.31}{300}=542.5177\approx\text{ \$}542.52](https://img.qammunity.org/2023/formulas/mathematics/college/krq4y4uguyozepw621w792bqz3tclbgv78.png)
The monthly payments will be approximately $542.52