150k views
3 votes
Simplify the expression `2\sqrt{a^{2}b^{8}}\left(ab^{3}\right)^{-1}`You may type many lines to show your work. Enter equations inside the text using the square-root button below.

Simplify the expression `2\sqrt{a^{2}b^{8}}\left(ab^{3}\right)^{-1}`You may type many-example-1

1 Answer

3 votes

ANSWER

2b

Step-by-step explanation

To simplify this expression, we have to apply some of the exponents' properties. First, the square root is a fractional exponent,


√(x)=x^(1/2)

So we can rewrite the expression as,


2√(a^2b^8)(ab^3)^(-1)=2(a^2b^8)^(1/2)(ab^3)^(-1)

Then, we can distribute the exponents into the multiplication,


(xy)^z=x^zy^z

In this problem,


2(a^2b^8)^(1/2)(ab^3)^(-1)=2(a^2)^(1/2)(b^8)^(1/2)(a)^(-1)(b^3)^(-1)

Exponents of exponents are multiplied,


(x^y)^z=x^(yz)

In this problem,


2(a^2)^(1/2)(b^8)^(1/2)(a)^(-1)(b^3)^(-1)=2\cdot a^(2\cdot1/2)\operatorname{\cdot}b^{8\operatorname{\cdot}1/2}\operatorname{\cdot}a^(-1)\operatorname{\cdot}b^{3\operatorname{\cdot}(-1)}

Simplify if possible,


2\cdot a^(2\cdot1/2)\operatorname{\cdot}b^{8\operatorname{\cdot}1/2}\operatorname{\cdot}a^(-1)\operatorname{\cdot}b^{3\operatorname{\cdot}(-1)}=2\cdot a^1\operatorname{\cdot}b^4\operatorname{\cdot}a^(-1)\operatorname{\cdot}b^(-3)

Now, the product of two powers with the same base is equal to the base raised to the sum of the exponents,


x^y\cdot x^z=x^(y+z)

In this problem,


2\cdot a^1\operatorname{\cdot}b^4\operatorname{\cdot}a^(-1)\operatorname{\cdot}b^(-3)=2\cdot a^(1-1)\operatorname{\cdot}b^(4-3)

Solve the subtractions,


2\cdot a^(1-1)\operatorname{\cdot}b^(4-3)=2\cdot a^0\cdot b^1=2b

Hence, the simplified expression is 2b.

User Gruenewa
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.