181k views
4 votes
For what values of k will the sum of the solutions of x^2 - (k^2 - 3k)x + 24=0 be 10?

User Simplename
by
3.9k points

1 Answer

5 votes

The Solution:

Given the equation below:


x^2-(k^2-3k)x+24=0

We are required to find the value of k that will make the sum of the solutions to be 10.

Step 1:

Let:


\begin{gathered} k^2-3k\text{ be represented with b} \\ \text{ So that we have} \\ k^2-3k=b\ldots eqn(1) \end{gathered}

So, the given equation becomes:


x^2-bx+24=0

We shall the Quadratic Formula Method to solve for x in terms of b.

In this case,


\begin{gathered} a=1 \\ b=-b \\ c=24 \end{gathered}

Substituting, we get


x=\frac{-b\pm\text{ }\sqrt[]{(-b)^2-(4*1*24)}}{2(1)}
x=\frac{-b\pm\text{ }\sqrt[]{b^2-96}}{2}

So, the solutions to the given equation are:


\begin{gathered} x=\frac{-b+\text{ }\sqrt[]{b^2-96}}{2} \\ \text{ or} \\ x=\frac{-b-\text{ }\sqrt[]{b^2-96}}{2} \end{gathered}

Equating their sum to 10.


\begin{gathered} \frac{-b+\text{ }\sqrt[]{b^2-96}}{2}+\frac{-b-\text{ }\sqrt[]{b^2-96}}{2}=10 \\ \\ \\ \frac{-b+\text{ }\sqrt[]{b^2-96}+-b-\text{ }\sqrt[]{b^2-96}}{2}=10 \end{gathered}

Simplifying, we get


\begin{gathered} (-2b)/(2)=10 \\ \\ -b=10 \end{gathered}

Substituting for b, we get


\begin{gathered} -(k^2-3k)=10 \\ k^2-3k=-10 \\ k^2-3k+10=0 \end{gathered}

Solving for k by the Quadratic Formula method of solving quadratic equation, we get


k=\frac{-b\pm\text{ }\sqrt[]{b^2-4ac}}{2a}

Where


a=1,b=-3\text{ and c=10}

Substituting, we get


k=\frac{-(-3)\pm\text{ }\sqrt[]{(-3)^2-(4*1*10)}}{2(1)}
k=\frac{3\pm\text{ }\sqrt[]{9^{}-40}}{2}=\frac{3\pm\text{ }\sqrt[]{-31}}{2}
\begin{gathered} k=\frac{3+\text{ }\sqrt[]{-31}}{2}\text{ or }k=\frac{3-\text{ }\sqrt[]{-31}}{2} \\ \end{gathered}

Therefore, the correct answer is


k=\frac{3+\text{ }\sqrt[]{-31}}{2}\text{ or }k=\frac{3-\text{ }\sqrt[]{-31}}{2}

Alternatively,

We can use the sum of roots formula below:


\begin{gathered} \text{ Sum of roots = }(-b)/(a) \\ \text{if given a quadratic equation of the form ax}^2+bx+c=0 \end{gathered}

So, we get


\begin{gathered} a=1 \\ b=-(k^2-3k) \\ c=24 \end{gathered}

So,


\begin{gathered} \text{ Sum=}(--(k^2-3k))/(1)=10 \\ \\ k^2-3k=10 \\ \\ k^2-3k-10=0 \end{gathered}

Then you can now solve from here as have done in the previous method.

Solve the quadratic equation above for k.

For what values of k will the sum of the solutions of x^2 - (k^2 - 3k)x + 24=0 be-example-1
User Bolot
by
4.2k points