Answer
![\Delta H_(rxn)\operatorname{\degree}=-4791.6\text{ }kJ\text{/}mol]()
Step-by-step explanation
The given chemical equation for the reaction is:
![4N_2H_3CH_3(l)+5N_2O_4(l)\text{ }→\text{ }12H_2O\left(g\right)+9N_2\left(g\right)+4CO_2(g)](https://img.qammunity.org/2023/formulas/chemistry/college/2qmgs98g09f1lecp1zconmxokpdnukbff2.png)
From the given table and question, the enthalpies of formation of the reactants ad products are:
![\begin{gathered} ∆H_f°(N_2H_3CH_(3(l)))=+53\text{ }kJ\text{/}mol \\ \\ ∆H_f°(N_2O_(4(l)))=-20\text{ }kJ\text{/}mol \\ \\ ∆H_f°(H_2O_((g)))=-258.8\text{ }kJ\text{/}mol \\ \\ ∆H_f°(N_(2(g)))=0\text{ }kJ\text{/}mol \\ \\ ∆H_f°(CO_(2(g)))=-393.5\text{ }kJ\text{/}mol \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/g2en2sxew5ml17gh3zhx0oobirsjuyjwbi.png)
The ∆H° for this reaction can be calculated using the formula below:
![\Delta H_(rxn)\degree=ΔH_f^(\degree)(products)-ΔH_f^(\degree)(reactants)](https://img.qammunity.org/2023/formulas/chemistry/college/gg6j2coideftts4d6mtgjfhdqtcf7munsy.png)
Put the each enthalpy of formation of the reactants and the products into the formula:
![\begin{gathered} \Delta H_(rxn)\degree=[12(-258.8)+9(0)+4(-393.5)]-[4(+53)+5(-20)] \\ \\ \Delta H_(rxn)\degree=[-3105.6+0-1574]-[212-100] \\ \\ \Delta H_(rxn)\degree=-4679.6-112 \\ \\ \Delta H_(rxn)\degree=-4791.6\text{ }kJ\text{/}mol \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/mrz90tt9phfn3609zirbed0sxzlw5vbcry.png)
Therefore, the ∆H° for this reaction is -4791.6 kJ/mol.