44.0k views
4 votes
19) Given that f(x)x² - 8x+ 15x² - 25find the horizontal and vertical asymptotes using the limits of the function.A) No Vertical or Horizontal asymptotesB) No Vertical asymptotesHorizontal asymptote aty - 1Vertical asymptote at x = 5Horizontal asymptote at y = 1D) Vertical asymptote at x = -5Horizontal asymptote at y = 1

User Stevens
by
3.3k points

1 Answer

3 votes

EXPLANATION

Since we have the function:


f(x)=(x^2-8x+15)/(x^2)

Vertical asymptotes:


For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points,\:also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function.

Taking the denominator and comparing to zero:


x+5=0

The following points are undefined:


x=-5

Therefore, the vertical asymptote is at x=-5

Horizontal asymptotes:


\mathrm{If\:denominator's\:degree\:>\:numerator's\:degree,\:the\:horizontal\:asymptote\:is\:the\:x-axis:}\:y=0.
If\:numerator's\:degree\:=\:1\:+\:denominator's\:degree,\:the\:asymptote\:is\:a\:slant\:asymptote\:of\:the\:form:\:y=mx+b.
If\:the\:degrees\:are\:equal,\:the\:asymptote\:is:\:y=(numerator's\:leading\:coefficient)/(denominator's\:leading\:coefficient)
\mathrm{If\:numerator's\:degree\:>\:1\:+\:denominator's\:degree,\:there\:is\:no\:horizontal\:asymptote.}
\mathrm{The\:degree\:of\:the\:numerator}=1.\:\mathrm{The\:degree\:of\:the\:denominator}=1
\mathrm{The\:degrees\:are\:equal,\:the\:asymptote\:is:}\:y=\frac{\mathrm{numerator's\:leading\:coefficient}}{\mathrm{denominator's\:leading\:coefficient}}
\mathrm{Numerator's\:leading\:coefficient}=1,\:\mathrm{Denominator's\:leading\:coefficient}=1
y=(1)/(1)
\mathrm{The\:horizontal\:asymptote\:is:}
y=1

In conclusion:


\mathrm{Vertical}\text{ asymptotes}:\:x=-5,\:\mathrm{Horizontal}\text{ asymptotes}:\:y=1

User Greg Hornby
by
3.3k points