By definition, the standard deviation is
![\sigma = \sqrt{\frac{\sum_(i=1)^(n)\left(x_i-\bar{x}\right)^2}{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/upldx1b63ozx0w07hds2lr5kmdm02ozrz7.png)
It seems hard so let's do it step by step, first, let's find the mean of the data
![\begin{gathered} \bar{x}=(24+29+2+21+9)/(5) \\ \\ \bar{x}=17 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c46wu1s2hy2130qp481rp2y26jltzxu0iw.png)
Now we have the mean value, let's do each value of the set minus the mean value
![\begin{gathered} x_1-\bar{x}=24-17=7 \\ \\ x_2-\bar{x}=29-17=12 \\ \\ x_3-\bar{x}=2-17=-15 \\ \\ x_4-\bar{x}=29-17=4 \\ \\ x_4-\bar{x}=9-17=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/87v156oaojl2p2lcohdk3jovg03l7asxlr.png)
Now we have the difference between each element and the mean value, let's do the square of all values
![\begin{gathered} (x_1-\bar{x})^2=7^2=49 \\ \\ (x_2-\bar{x})^2=12^2=144 \\ \\ (x_3-\bar{x})^2=(-15)^2=225 \\ \\ (x_4-\bar{x})^2=4^2=16 \\ \\ (x_5-\bar{x})^2=(-8)^2=64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1gy584mwx1akv324i7pnkmxfusiw3r0o3p.png)
Now we have the square of the difference we sum them
![\begin{gathered} \sum_(i=1)^5\left(x_i-\bar{x}\right)^2=\left(x_1-\bar{x}\right)^2+\left(x_2-\bar{x}\right)^2+\left(x_3-\bar{x}\right)^2+\left(x_4-\bar{x}\right)^2+\left(x_5-\bar{x}\right)^2 \\ \\ \sum_(i=1)^5\left(x_i-\bar{x}\right)^2=49+144+225+16+64 \\ \\ \sum_(i=1)^5\left(x_i-\bar{x}\right)^2=498 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hxihj4p00zrd83m334vziig6bbl0x9o8ck.png)
Now we have the sum we must divide by the number of elements, in that case, 5 elements
![\frac{\sum_(i=1)^5\left(x_i-\bar{x}\right)^2}{5}=99.6](https://img.qammunity.org/2023/formulas/mathematics/college/sa8w4f0fbhyy7hqjf2rbkvw5skvvkiky29.png)
Now we take the square root of that value to have the standard deviation!
![\sigma=√(99.6)=9.979](https://img.qammunity.org/2023/formulas/mathematics/college/irrrtiv2nnnqmptofgdoked040i7hxyujv.png)
We write it using only one decimal the result would be
![\sigma=9.9](https://img.qammunity.org/2023/formulas/mathematics/college/w4d02yb5j735fjd6kzene57a0xyb3ig39r.png)
With no rounding.
Final answer:
![\sigma=9.9](https://img.qammunity.org/2023/formulas/mathematics/college/w4d02yb5j735fjd6kzene57a0xyb3ig39r.png)