Given
a). n = 4
b). n = 15
c). n = 24
Find
values that form the boundaries of the critical region for a two-tailed test with a = .05
Step-by-step explanation
a) n = 4
degree of freedom = n - 1 = 4 - 1 = 3
so , the t value for critical region =
![\begin{gathered} \pm t_(0.05,3) \\ \pm3.182 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s68gwgjukodf4w2izzokinhuzqgvzk1099.png)
b) n = 15
degree of freedom = 15 - 1 = 14
so , t- value =
![\begin{gathered} \pm t_(0.05,15) \\ \pm2.131 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g1gzbjoptm2uwkelvytofn2vrbgumc3jvx.png)
c) n = 24
degree of freedom = 24 - 1 = 23
so , t - value =
![\begin{gathered} \pm t_(0.05,23) \\ \pm2.069 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mn7uv450dpc3q6t920j3hzvp8lc9384kef.png)
Final Answer
Hence , the values that form the boundaries of the critical region for a two-tailed test with a = .05 are
a)
![\pm3.182](https://img.qammunity.org/2023/formulas/mathematics/college/vyvmzgnkhuzyt6nelfzpy83l3px7jhctrx.png)
b)
![\pm2.131](https://img.qammunity.org/2023/formulas/mathematics/college/scj1kgf312ykxkxzmzhp7nqwa4hetsqn9i.png)
c)
![\pm2.069](https://img.qammunity.org/2023/formulas/mathematics/college/6b4ghes75hrrkw11amtnedte15uwa18rlf.png)