7) The angle asked is ajacent to the leg given and we also have the hypotenuse. So we can use cossine:
![\begin{gathered} \cos x=(8)/(18)=(4)/(9) \\ x=\arccos ((4)/(9))=64\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6g86w8dhuxjjxy5cfp9u3xtwe8714spbue.png)
8) Here we want the hypotenus given an angle an its opposite leg. So we can use sine:
![\begin{gathered} \sin (65\degree)=(10)/(x) \\ x=(10)/(\sin (65\degree))=11.0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ughanagq059je4t4wdgd4fy1e41l7n5t0p.png)
9) We want the leg which is opposite of a given angle and we have the hypotenuse. So we can use sine again:
![\begin{gathered} \sin (28\degree)=(x)/(15) \\ x=15\cdot\sin (28\degree)=7.0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kjiu9psixhz429pnr07jagoqiwk1jihvp8.png)