We have the following:
![f(x)=8^x](https://img.qammunity.org/2023/formulas/mathematics/college/xvynyefyzp68f9fs7dtqs8sztmbxprtjhq.png)
(a)
for there to be an upward displacement, we must add the function the value that we want it to rise, like this
![f(x)=8^x+5](https://img.qammunity.org/2023/formulas/mathematics/college/kx5veega3fsewot2o9wtfrq08028qfhtai.png)
(b)
for there to be a shift to the left, we must add the exponent from the value we want it to rise, like this
![f(x)=8^(x+9)](https://img.qammunity.org/2023/formulas/mathematics/college/a73g5avlnxg0wuw3fangdbsfr9kvnhi55s.png)
(c)
for there to be a shift to the left, we must subtract the exponent from the value we want it to rise, like this
The inverse is:
![\begin{gathered} y=8^x \\ x=8^y \\ \ln x=y\cdot\ln 8 \\ y=(\ln x)/(\ln 8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvtyx022p4a264rih5a71eu3y6cjdn0v04.png)
The answer is
![f(x)=(\ln x)/(\ln 8)](https://img.qammunity.org/2023/formulas/mathematics/college/xyxzzq0w6cky5twbd299qm2vzyhw6c68ck.png)