124k views
3 votes
Two containers designed to hold water are side by side both in the shape of a cycle see. Container A has a radius of 4 feet and a height of 9 feet. Container B has a radius of 3 feet and height of 11 feet. Container A is full of water and the water is pumped into container B until container B is completely full. After the pumping is complete what is the volume of water remaining in container A to the nearest tenth of a cubic foot

Two containers designed to hold water are side by side both in the shape of a cycle-example-1
User Namiko
by
8.6k points

2 Answers

3 votes
We have to calculate the water remaining in A
after B is complete.
This will be equal to the volume of A minus the
volume of B.
The volume of each cylinder is equal to the area
of the base times the height, so we can calculate
this difference as:
- VA
- VB
V
=1(rA)?hA-T(rB)?hB
V
= 7(4)3 (9)
- 1(3)3 (11)
V
= 7(16) (9) - 1(9)(11)
V= 1447 - 99T
V
= 45 T
V~141.4
Answer: the remaining volume is
approximately 141.4 cubic feet.
User Kidmose
by
7.6k points
1 vote

We have to calculate the water remaining in A after B is complete.

This will be equal to the volume of A minus the volume of B.

The volume of each cylinder is equal to the area of the base times the height, so we can calculate this difference as:


\begin{gathered} V=V_A-V_B \\ V=\pi(r_A)^2h_A-\pi(r_B)^2h_B \\ V=\pi(4)^2(9)-\pi(3)^2(11) \\ V=\pi(16)(9)-\pi(9)(11) \\ V=144\pi-99\pi \\ V=45\pi \\ V\approx141.4 \end{gathered}

Answer: the remaining volume is approximately 141.4 cubic feet.

User Lens
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.