171k views
4 votes
Given the pre-image coordinates (0, 5), (-3, 2), (4, -1) and transformed image coordinates (2, -5), (-1, -2), (6, 1), what is the coordinate transformation in function notation?

User Drnk
by
5.7k points

1 Answer

5 votes

Given:

The pre-image coordinates (0, 5), (-3, 2), (4, -1) and transformed image coordinates (2, -5), (-1, -2), (6, 1).

Required:

We need to find the transformation in function notation.

Step-by-step explanation:

Let (x,y) be the pre-image coordinate and (x',y') be the transformed image coordinates.

The transformation is


(x,y)\rightarrow(x^(\prime),y^(\prime)).

Consider the points (0,5) and (2,-5).

Substitute the values in the transformation.


(0,5)\rightarrow(2,-5)


(0,5)\rightarrow(0+2,-(5))

Let x =0 and y =5, we get


(x,y)\rightarrow(x+2,-y)

Consider the points (-3,2) and (-1,-2).


(-3,2)\rightarrow(-1,-2)
Use\text{ }-3+2=-1.


(-3,2)\rightarrow(-3+2,-(2))

Let x =-3 and y=2.


(x,y)\rightarrow(x+2,-y)

Consider the points (4,-1) and (6,-1).


(4,-1)\rightarrow(6,1)
Use\text{ }4+2=6.


(4,-1)\rightarrow(4+1,-(1))


(x,y)\rightarrow(x+2,-y)


f(x,y)=(x+2,-y)

Final answer:


(x,y)\rightarrow(x+2,-y)


f:(x,y)\rightarrow(x+2,-y)

User Mitja Bonca
by
6.1k points