Given:
![f(x)=3^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/jbadg032998mw28cc0i5bu61syxvy0x8dw.png)
To find:
The type of function by completing the table and graphing the function
Step-by-step explanation:
When x = -2,
![\begin{gathered} y=3^(-2) \\ =(1)/(3^2) \\ =(1)/(9) \\ =0.11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dbsialy7lx0ct4kh0l7g3glirg4k2rg81m.png)
When x = -1,
![\begin{gathered} y=3^(-1) \\ =(1)/(3) \\ =0.33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4moxrjku6qex9xxvfpdyd9a47vgyvdd3sx.png)
When x = 0,
![\begin{gathered} y=3^0 \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8vv9ubbsj96juy7i5kvzyn4fw2f4abo327.png)
When x = 1,
![\begin{gathered} y=3^1 \\ =3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ugb8wg1gbtau7499xeu3ojpf9257ycejet.png)
When x = 2,
![\begin{gathered} y=3^2 \\ =9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5svdja53ricu1ii35jm34vukt6prr8b6g.png)
Therefore, the table values are,
Then, the graph will be,
Since the domain of the function is real numbers and the range of the function is a set of positive real numbers.
Therefore, it is an exponential function.