Given
Values for relation g
Find
Which pair is in g inverse.
Step-by-step explanation
In the inverse function , it satisfies when y = f(x)
![x=f^(-1)(y)](https://img.qammunity.org/2023/formulas/mathematics/college/l8yxh5ofow2qyo3nzicbk8zcc9q3nmldrc.png)
so , in the inverse of g
since g(4) = 9 , so
![4=g^(-1)(9)](https://img.qammunity.org/2023/formulas/mathematics/college/gbrb69t1zqfezm6tyvth921d94np91t7pt.png)
g(5) = 13 , so
![13=g^(-1)(5)](https://img.qammunity.org/2023/formulas/mathematics/college/z87arys29mkqpa741b98qee3fepx5hvwzl.png)
g(3) = 5 , so
![5=g^(-1)(3)](https://img.qammunity.org/2023/formulas/mathematics/college/g204hmw1epj6sycg76fxq8nzvgljxksod8.png)
g(2) = 2 , so
![2=g^(-1)(2)](https://img.qammunity.org/2023/formulas/mathematics/college/xuhitz8y1bjv023e4n5qrlskmbs5r2wmln.png)
so , (13 , 5) would be found in the inverse of g
Final Answer
Hence , the correct option is (13 , 5)