To answer this question we will set and solve an equation.
Let x, x+2, and x+4 be three consecutive even integers whose sum is 162, then we can set the following equation:
![x+x+2+x+4=162.](https://img.qammunity.org/2023/formulas/mathematics/college/eqzhob28h8lyo5te2k9o7ehljoh41r20ne.png)
Adding like terms we get:
![3x+6=162.](https://img.qammunity.org/2023/formulas/mathematics/college/34fw1krpj3cgc6wzgzfgu3zcufrklm9w6w.png)
Subtracting 6 from the above equation we get:
![\begin{gathered} 3x+6-6=162-6, \\ 3x=156. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wm0b6722ysuyiu3u7frnzsa4xdc3q9bvot.png)
Dividing the above equation by 3 we get:
![\begin{gathered} (3x)/(3)=(156)/(3), \\ x=52. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aio1nxqqzeplgcqyedkk034r9xrwno8xeo.png)
Therefore the three consecutive even integers whose sum is 162 are:
![52,54,56.](https://img.qammunity.org/2023/formulas/mathematics/college/vee49fl3e5vd7ulsd5slb2hlzo5uplhwyg.png)
Answer:
![52,54,56.](https://img.qammunity.org/2023/formulas/mathematics/college/vee49fl3e5vd7ulsd5slb2hlzo5uplhwyg.png)