Given the equation of an elipse
![(x^2)/(a^2)+(y^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/5duq410n0g4a55izgg1fu5lnxb1zd18hch.png)
from the question,
![\begin{gathered} \text{major axis}\Rightarrow2a \\ \therefore2a=52 \\ a=(52)/(2)=26ft \\ b=13ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q84jkkgeirfqj84i2w00zo7owev6phgebm.png)
Given that
![x=14ft](https://img.qammunity.org/2023/formulas/mathematics/college/cbp26ejsohsq7p3r8t5ueg62tmw24s94hj.png)
Substitute, for a,b, and x in the elipse formula to find y
![\begin{gathered} (14^2)/(26^2)+(y^2)/(13^2)=1 \\ (196)/(676)+(y^2)/(169)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/75e5fypsn4pm7c26eii9wroo36prm40foz.png)
Multiply through by 169
![\begin{gathered} 49+y^2=169 \\ y^2=169-49 \\ y^2=120 \\ y=\sqrt[]{120}=10.95ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jfwmdpqh0mj7mgcc18jl96h9lp5n6q46nc.png)
Hence, it clear the arch because the height of the archway of the bridge 7 feet from the center is approximatelyfeet