Given sin(x)=5/13
First, lets find cos(x).
It is known that:
![\begin{gathered} \sin ^2(x)+\cos ^2(x)=1 \\ ((5)/(13))^2+\cos ^2(x)=1 \\ \cos ^2(x)=1-(25)/(169) \\ \cos ^2(x)=(169-25)/(169)=(144)/(169) \\ \cos (x)=\pm\sqrt[]{(144)/(169)}\text{ = }\frac{\sqrt[]{144}}{\sqrt[]{169}} \\ \cos (x)=\pm(12)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eg7lri4eutzjv7k77nqthi8q13odb16ynf.png)
Since π/2 < x < π, we are in 2nd quadrant. Then, cos(x) is negative.
![\cos (x)=-(12)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/pf81paatyvpl70pt34umsdad0mct1nhkl1.png)
Since we know the values for sin and cos, we can find tan(x):
![\begin{gathered} \tan (x)=(\sin(x))/(\cos(x)) \\ \tan (x)=((5)/(13))/(-(12)/(13)) \\ \tan (x)==-(5)/(12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2t6o6gbkvhc9r7tfkyojiuqbh7u11sgx44.png)
Now, lets work with the expression tan(2x)
It is known that:
![\tan (2x)=(2\tan(x))/(1-\tan^2(x))](https://img.qammunity.org/2023/formulas/mathematics/college/ziyjsn68vdl683v2cqzi3xrm5k1khni83c.png)
Since we know tan(x), we can substitute in the expression above and find the value of tan(2x):
![\begin{gathered} \tan (2x)=(2\tan(x))/(1-\tan^2(x)) \\ \tan (2x)=\frac{2\cdot(-(5)/(12)_{})}{1-(-(5)/(12))^2} \\ \tan (2x)=(-(10)/(12))/(1-(25)/(144))=(-(10)/(12))/((144-25)/(144))=(-(10)/(12))/((119)/(144))=-(10)/(12)\cdot(144)/(119) \\ \tan (2x)=-(120)/(119) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ct7ibyd33rz8fmh28ed96f432whixtid05.png)
Answer: -120/119