205k views
2 votes
Caluculate the length of AC to 1 decimal place in the trapezium below.

Caluculate the length of AC to 1 decimal place in the trapezium below.-example-1
User Pedro X
by
5.1k points

1 Answer

4 votes

Check the picture below.

usign the pythagorean theorem let's find the side CD, then let's get the side AC using the same pythagorean threorem.


\textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies √(c^2 - b^2)=a \qquad \begin{cases} c=\stackrel{hypotenuse}{16}\\ a=\stackrel{adjacent}{CD}\\ b=\stackrel{opposite}{7}\\ \end{cases} \\\\\\ √(16^2 - 7^2)=CD\implies √(207)=CD \\\\[-0.35em] ~\dotfill


c^2=a^2+b^2\implies c=√(a^2 + b^2) \qquad \begin{cases} c=\stackrel{hypotenuse}{AC}\\ a=\stackrel{adjacent}{CD}\\ b=\stackrel{opposite}{11}\\ \end{cases} \\\\\\ AC=\sqrt{(√(207))^2~~ + ~~11^2}\implies AC=√(207 + 121)\implies \boxed{AC\approx 18.1}

Caluculate the length of AC to 1 decimal place in the trapezium below.-example-1
User Ferit
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.