26.1k views
3 votes
Use the specified row transformation to change the given matrix.6R_1+R_2

Use the specified row transformation to change the given matrix.6R_1+R_2-example-1

1 Answer

6 votes

ANSWER:


6\cdot R_1+R_2=\begin{bmatrix}{0} & 39 & {23} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix}

Explanation:

We have the following matrix:


\begin{bmatrix}{1} & 5 & {4} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix}=\begin{cases}R_1 \\ R_2 \\ R_3\end{cases}

Now, we apply the following changes


\begin{gathered} 6\cdot R_1+R_2 \\ 6\cdot R_1=\begin{bmatrix}{6\cdot1} & 6\cdot5 & 6\cdot{4} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix}=\begin{bmatrix}{6} & 30 & {24} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix} \\ 6\cdot R_1+R_2=\begin{bmatrix}{6+(-6)} & 30+9 & {24+(-1)} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix}=\begin{bmatrix}{0} & 39 & {23} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix} \\ 6\cdot R_1+R_2=\begin{bmatrix}{0} & 39 & {23} \\ {-6} & {9} & {-1} \\ {3} & {7} & {0}\end{bmatrix} \end{gathered}

User Markus T
by
4.8k points