We know that the line passes through the points (10,130) and (20,200).
First, we have to find the slope with the following formula
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Where,
![\begin{gathered} x_1=10 \\ ^{}x_2=15^{} \\ y_1=80 \\ y_2=95 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l9qkd6i7yayciuiabci5cmhqfbrdy0p3j8.png)
Replacing these coordinates, we have
![m=(95-80)/(15-10)=(15)/(5)=3](https://img.qammunity.org/2023/formulas/mathematics/college/t3pc6imbzujdujbbri7lyxtl5d74somgxx.png)
The slope is 7.
Now, we use one point, the slope, and the point-slope formula to find the equation
![\begin{gathered} y-y_1=m(x-x_1) \\ y-80=3(x-10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ou97wmz84wl5tl2pkmowm6er4w5mkxolri.png)
Therefore, the point-slope form of the line is
![y-80=3(x-10)](https://img.qammunity.org/2023/formulas/mathematics/college/6kp2yxkmqe0q3334js78kmx6zn3cks8uzy.png)