The binomial distribution is
![\begin{gathered} P(X=k)=(nbinomialk)p^k(1-p)^(n-k) \\ k\rightarrow\text{ number of successful trials} \\ n\rightarrow\text{ total number of trials} \\ p\rightarrow\text{ probability of a trial being successful} \\ (nbinomialk)=(n!)/((n-k)!k!) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/auoh4191lv8k632pevttl5khzycwikybxv.png)
Therefore, in our case, the distribution is
![n=20,p=20\%=0.2](https://img.qammunity.org/2023/formulas/mathematics/college/vxotzniwnlskrcd1rdauayymbgv77bd40h.png)
And we are interested in the probability of k=0 (0 defective bulbs) and k=1 (1 defective bulb). Thus,
![P(X=0)=(20binomial0)(0.2)^0(0.8)^(20)=1*1*0.8^(20)=0.8^(20)](https://img.qammunity.org/2023/formulas/mathematics/college/a6kfx0j1v1po5m42q57dab01a5kir3tzhv.png)
Similarly,
![P(X=1)=(20binomial1)(0.2)^1(0.8)^(19)=20*0.2*(0.8)^(19)=4*0.8^(19)](https://img.qammunity.org/2023/formulas/mathematics/college/o1mtc9mbl6x5o4k8r9nka5rc0v4rrmk258.png)
Hence,
![P(X\leq1)=P(X=0)+P(X=1)=0.8^(20)+4(0.8)^(19)\approx0.0692](https://img.qammunity.org/2023/formulas/mathematics/college/qbcgd2lp2io35hk59wb4gj2wamnvdzqtxi.png)
The probability of the 20 bulbs including 1 or fewer defective bulbs is 0.0692, the answer is 0.0692