9) We can calculate the volume as the product of the base area and the height.
The base is a circle with radius r=18 in. Then, its area is:
![A_b=\pi r^2=\pi\cdot18^2=324\pi](https://img.qammunity.org/2023/formulas/mathematics/college/kt779qi8vzgvx3rigjeirxy1ya71emoaw7.png)
Then, we can calculate the volume V as:
![V=A_b\cdot h=324\pi\cdot15=4860\pi](https://img.qammunity.org/2023/formulas/mathematics/college/b9jylzgdw2p5oh8o289vo9huvltnrkt3p7.png)
10) In this case the circular base is on the side, but we can still use the same principle to calculate the volume.
The area of the base with diameter D = 11 in is:
![A_b=(\pi D^2)/(4)=(\pi\cdot11^2)/(4)=(\pi\cdot121)/(4)=(121)/(4)\pi](https://img.qammunity.org/2023/formulas/mathematics/college/wtv8yhfe6xr6qne90z39v0kpx21ahtt6pi.png)
Then, we can calculate the volume V as:
![V=A_b\cdot h=(121)/(4)\pi\cdot21=(2541)/(4)\pi=635.25\pi](https://img.qammunity.org/2023/formulas/mathematics/college/ysf0qs9o13gyrzqfu49ge95s7w2i2dyo8f.png)
Answer:
9) V = 4860π
10) V = 635.25π