Let us use the rule of the double of the angle
Since

Substitute cos B by 7/8

Add 1 to both sides

Divide both sides by 2

Take a square root for both sides
![\begin{gathered} \sqrt[]{(15)/(16)}=\cos (B)/(2) \\ \cos (B)/(2)=\frac{\sqrt[]{15}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/smpnlq1rucy4p85jm4dorjkstfpy54nhtc.png)
let us find sin B
Since

Then

Subtract 15/16 from both sides

Take a square root for both sides
![\begin{gathered} \sin (B)/(2)=\sqrt[]{(1)/(16)} \\ \sin (B)/(2)=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d3n25x9e21slcnixnx7kx7zc84vgcjcpfw.png)
Since

Then
![\begin{gathered} \tan (B)/(2)=\frac{(1)/(4)}{\frac{\sqrt[]{15}}{4}} \\ \tan (B)/(2)=\frac{1}{\sqrt[]{15}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3vi0kqot6rinp9s20el1abix5oiecflnrd.png)
The value of tan(1/2 B) is
![\frac{1}{\sqrt[]{15}}*\frac{\sqrt[]{15}}{\sqrt[]{15}}=\frac{\sqrt[]{15}}{15}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s88jba3gzmt0jgecmvhbfuy76mzqv2z8qh.png)