Let us use the rule of the double of the angle
Since
![\cos B=2\cos ^2(B)/(2)-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/pqzt311ox58sajuvoz1bed1yivn9c46wvr.png)
Substitute cos B by 7/8
![(7)/(8)=2\cos ^2(B)/(2)-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/bew5kwx1bg5kauxlpu2i80u2xsm4mu3w8c.png)
Add 1 to both sides
![\begin{gathered} (7)/(8)+1=2\cos ^2(B)/(2)-1+1 \\ (15)/(8)=2\cos ^2(B)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zvxkvvvi92ybqb9g61729hkolkrsa8qgyp.png)
Divide both sides by 2
![\begin{gathered} ((15)/(8))/(2)=(2\cos ^2(B)/(2))/(2) \\ (15)/(16)=\cos ^2(B)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8nf0l55xa1r4ehi47txgtdq1wri4w908am.png)
Take a square root for both sides
![\begin{gathered} \sqrt[]{(15)/(16)}=\cos (B)/(2) \\ \cos (B)/(2)=\frac{\sqrt[]{15}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/smpnlq1rucy4p85jm4dorjkstfpy54nhtc.png)
let us find sin B
Since
![\sin ^2(B)/(2)+\cos ^2(B)/(2)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/urup1dutn88wmoohblrxjxfd3np0ipto6d.png)
Then
![\sin ^2(B)/(2)+(15)/(16)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/cncmqn3g9tz01k0h6lp0ijv5vptbrr7oy4.png)
Subtract 15/16 from both sides
![\begin{gathered} \sin ^2(B)/(2)+(15)/(16)-(15)/(16)=1-(15)/(16) \\ \sin ^2(B)/(2)=(1)/(16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bcjfwcwuat470vnl0wgxzzfk8u7lx5s5ef.png)
Take a square root for both sides
![\begin{gathered} \sin (B)/(2)=\sqrt[]{(1)/(16)} \\ \sin (B)/(2)=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d3n25x9e21slcnixnx7kx7zc84vgcjcpfw.png)
Since
![\tan (B)/(2)=(\sin (B)/(2))/(\cos (B)/(2))](https://img.qammunity.org/2023/formulas/mathematics/high-school/vjn70igpssl21gjb9ysx8dh5ynep13zn3k.png)
Then
![\begin{gathered} \tan (B)/(2)=\frac{(1)/(4)}{\frac{\sqrt[]{15}}{4}} \\ \tan (B)/(2)=\frac{1}{\sqrt[]{15}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3vi0kqot6rinp9s20el1abix5oiecflnrd.png)
The value of tan(1/2 B) is
![\frac{1}{\sqrt[]{15}}*\frac{\sqrt[]{15}}{\sqrt[]{15}}=\frac{\sqrt[]{15}}{15}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s88jba3gzmt0jgecmvhbfuy76mzqv2z8qh.png)