Step 1: Concept
Write the formula for the equation of a line in terms of point-slope form
and in slope-intercept form.
![\begin{gathered} Pi\text{ont slope form is given below} \\ y-y_1=m(x-x_1) \\ \text{Slope}-\text{intercept form} \\ y\text{ = mx + c} \\ m\text{ = }(y_2-y_1)/(x_2-x_1) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bwdcq7s8e5tdgv3mc1ykztvwdndgr6cyjb.png)
Where
m = slope
c = intercept
Step 2: Represent the coordinates
![\begin{gathered} (x_1,y_1\text{ ) = (1, -5)} \\ (x_2,y_2\text{ ) = ( -3, 7)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2zrj02y149hj74df2z6da7dzpez11c3hry.png)
Step 3: Find the slope, using slope formula.
![\begin{gathered} m\text{ = slope} \\ \text{m = }(y_2-y_1)/(x_2-x_1) \\ m\text{ = }\frac{7\text{ -(-5)}}{-3\text{ -1}} \\ m\text{ = }\frac{7\text{ + 5}}{-4} \\ m\text{ = }(12)/(-4) \\ m\text{ = -3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cltriqns85refu7fhhpfuhpjitxqusqdn3.png)
Step 4: Write an equation for the line in point-slope form.
![\begin{gathered} \text{y - y}_1=m(x-x_1) \\ y\text{ -(-5) = -3(x - 1)} \\ \text{y + 5 = -3(x - 1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c2f8b9q2ar04qdvoyzs9251i9w2wwnvq7d.png)
Step 5: Simplify the equation in 4 to write the equation in slope-intercept form.
y + 5 = -3(x - 1)
y + 5 = -3x + 3
y = -3x + 3 - 5
y = -3x - 2
Final answer
Option B
y + 5 = -3(x - 1)
y = -3x - 2