let's find the components for the initial velocity
![v_ix=2.35\cdot\cos (-22)=2.18](https://img.qammunity.org/2023/formulas/physics/college/mgvhpr6f650ho8qdjfdlhpcsom6pxddclc.png)
![v_iy=2.35\cdot\sin (-22)=-0.88_{}](https://img.qammunity.org/2023/formulas/physics/college/tfp9xg6l3a46hfy9vuk1f3cmvpkgqd0ieb.png)
then for the final velocity
![v_fx=6.42\cdot\cos (50)=4.13](https://img.qammunity.org/2023/formulas/physics/college/5ooyhhxe1nr7jh6e9oba4qnqb8q0434q0x.png)
![v_fy=6.42\cdot\sin (50)=4.92](https://img.qammunity.org/2023/formulas/physics/college/6d3exekbsrjkt9depphohguqdnqb4e9xi9.png)
The table that agrees with the problem is A)
Then for the acceleration, we will use the next formula
![a=\frac{v_f-v_i_{}}{t}](https://img.qammunity.org/2023/formulas/physics/college/9qplkuhmc39m206gz13xqngnqk0d0g2slt.png)
for the acceleration in x
![a_x=(v_fx-v_ix)/(t)=(4.13-2.18)/(0.215)=9.06m/s^2](https://img.qammunity.org/2023/formulas/physics/college/otoboljt1a6xltb2s2diqvn3zorf6sazft.png)
then for the acceleration in y
![a_y=(v_fy-v_iy)/(t)=(4.92-(-0.88))/(0.215)=26.97m/s^2](https://img.qammunity.org/2023/formulas/physics/college/4ohgghxdqgeqq2vq0vtanxets8n8nxaywb.png)
then we calculate the magnitude
![a=\sqrt[]{9.06^2+26.97^2}=28.45\text{ m/s}^2](https://img.qammunity.org/2023/formulas/physics/college/1gq44etfacq19qn00ew9adpadee24brm13.png)