Answer:
The area of the sector is;
![\begin{gathered} 10.2\pi m^2 \\ or \\ 32.04m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p41nco2ktngm9yvzzafzyviu4o03s1u73t.png)
Step-by-step explanation:
The Area of a sector can be calculated using the formula;
![A=(\theta)/(360)*\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/p4do1mcjlmg8mycjqave7188z6q1cx950o.png)
Where:
A = area of the sector
Angle theta = the angle bounding the sector
r = radius
Given:
![\begin{gathered} \theta=102^0 \\ r=\frac{\text{diameter}}{\text{2}}=(12m)/(2)=6m \\ r=6m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/er64wm2t742314q00dj27tgxtvjkhd4c3y.png)
substituting the given values, we have;
![\begin{gathered} A=(102)/(360)*\pi(6^2) \\ A=10.2\pi m^2 \\ A=32.04m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/afc0ej5w92ojgydhcay2yj6gahgftcetpy.png)
Therefore, the area of the sector is;
![\begin{gathered} 10.2\pi m^2 \\ or \\ 32.04m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p41nco2ktngm9yvzzafzyviu4o03s1u73t.png)