149k views
0 votes
What is the solution to the inequality 2-2x > -20

User Tobb
by
8.3k points

1 Answer

4 votes

To determine the solution for the given inequality, you have to solve it for x:


2-2x>-20

First, pass 2 to the right side of the inequality by applying the opposite operation to both sides of it:


\begin{gathered} 2-2-2x>-20-2 \\ -2x>-22 \end{gathered}

Next, note that the x-term is multiplied by "-2", to reach the value of x you have to cancel the said multiplication. For this, you have to divide both sides of the expression by "-2"

Now, keep in mind, that when you divide or multiply an inequality by a negative number, the direction of the inequality gets inversed. This means that the symbol "greater than, >" will tur into the symbol "less than. <":


\begin{gathered} -(2x)/(-2)<-(22)/(-2) \\ x<11 \end{gathered}

The solution for this inequality will be the values of x less than 11, symbolically: x < 11

User Rich Tier
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories