To get the mean absolute deviation, we first need the mean of the set. The mean is calculated by the sum of the values divided by the number of data:
![\begin{gathered} \mu=(2+5+6+12+15)/(5) \\ \mu=(40)/(5) \\ \mu=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gmfi1p2y6j0qlkl5ow9tez7ltsc1m3hy7g.png)
To get the means absolute deviation, we have to get the absolute difference between each data and the mean, sum them up and divide by the number of data:
![\begin{gathered} d_1=|2-8|=|-6|=6 \\ d_2=|5-8|=|-3|=3 \\ d_3=|6-8|=|-2|=2 \\ d_4=|12-8|=|4|=4 \\ d_5=|15-8|=|7|=7 \\ MAD=(6+3+2+4+7)/(5)=(22)/(5)=4.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ndtzusvdbjp6jfk3i8484pfex2u3b8ijb.png)