Answer:
• In order to understand this, we need to know that an inverse trigonometric function “undo” what the original trigonometric function
• e.g Trig function : inverse of trig. function .
Explanations :
(a) Inverse sine parent function:
The inverse y = six x parent function will be
![\begin{gathered} y=sinx^(-1)\text{ ; meaning } \\ x\text{ = sin y } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/we1vkllpt8w8k1nvadbx4b8khzcml6z57m.png)
• y = sinx ^-1 , has domain at [-1;1] and range at (-/2; /2)
(b)Inverse cosine parent function
the inverse of y = cos x parent function will be :
![\begin{gathered} y=cosx^(-1);\text{ meaning } \\ x\text{ = cos y } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bs8vc7fh6qaxgrfyij6bzkuzx5c3vbcnjc.png)
• y = cosx^-1 , has domain at [-1;1] and range at (0;)
(c)Inverse tangent parent function
The inverse of y = tan x parent function will be :
![\begin{gathered} y=tanx^{-1\text{ }},\text{ meaning } \\ x\text{ = tan y } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xor1dkp4jxaiftij3a7ykbyfhz6a3x5f8e.png)
• y = tanx^-1 has domain at (-∞;∞) and range at (- /2 ; /2)
see the graphs below that shows the asympotes of the trigonometric function.