Now for the point A), L is in the middle of M and H, and the interval will be:
![(M,H)](https://img.qammunity.org/2023/formulas/mathematics/college/yg366qnjkb2qh66rb5b5qt10e79071l5nr.png)
For the second point, We need to put the value of the segments in the draw...
From the draw, we can deduce that:
![ML+LH=MH](https://img.qammunity.org/2023/formulas/mathematics/college/gf01gb7iv21hhmtdk835a8e4bkl36fshbx.png)
We replace with values:
![\begin{gathered} ML+LH=MH \\ 6x-4+(10x+1)=29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1mzjsr2dnvxus5stsixce96e6kvzkq38rc.png)
We solve to x:
![\begin{gathered} 6x-4+(10x+1)=29 \\ 6x\text{ -4 +10x +1=29 ; we agroup the values with x} \\ (6x+10x)-4+1=29 \\ 16x-3=29 \\ 16x=29+3 \\ 16x=32 \\ x=(32)/(16)=2 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1kw34kobj2h3y4m5jjpqh3fphts6pk80oc.png)
Finally, if the value of x = 2, then whi can replace in:
![\begin{gathered} ML=6x-4 \\ ML=6(2)-4 \\ ML=12-4 \\ ML=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7clxfn83t0m5tf9cws7cvdj12uuahndinj.png)
Your answer of point B) is ML=8.