Statement Problem: The sum of two numbers is 7. Five times the larger number plus four times the smaller number is 48. Find the numbers.
Solution:
Let x be the larger number and y be the smaller number such that;
![\begin{gathered} x+y=7\ldots.\ldots\ldots\text{equation}1 \\ 5x+4y=48\ldots\ldots\text{.equation}2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1aou5rny1bwloqtmye84igv5efzfn9e7vz.png)
From equation 1, we have;
![\begin{gathered} x+y=7 \\ x=7-y\ldots\ldots\ldots....\text{equation}3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jc7bwe0wa9l0vrpn3f7y8lr17f18y5xnb9.png)
Substitute equation3 in equation2, we have;
![\begin{gathered} 5x+4y=48 \\ 5(7-y)+4y=48 \\ 35-5y+4y=48 \\ -1y=48-35 \\ -1y=13 \\ \text{Divide both sides by -1;} \\ -(1y)/(-1)=(13)/(-1) \\ y=-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sy0j8r3povrrmup5nu9k7l4hxjhexl0d13.png)
Then, substitute the value of y in equation3;
![\begin{gathered} x=7-y \\ x=7-(-13) \\ x=7+13 \\ x=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ptrgu0oqzbyo0kttavpsy4sckw7cz613cz.png)
Thus, the larger number is 20 and the smaller number is -13