Answer:
the other leg is √105
Step-by-step explanation:
Given:
Hypotenuse = 13
one of the legs of the triangle = 8
To find:
the other leg of the triangle
The triangle is right-angled. So, to get the third side, we will apply Pythagoras theorem:
Hypotenuse² = opposite² + adjacent²
let opposite = leg 1 = 8
adjacent = leg 2
Hypotenuse² = = leg1² + leg2²
![\begin{gathered} 13^2=\text{ 8}^2\text{ + leg}_2^2 \\ \\ 169\text{ = 64 + leg}_2^2 \\ \\ 169\text{ - 64 = leg}_2^2 \\ \\ 105\text{ = leg}_2^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g8h9h3zn5cp1t1u8qx1lp1z55q9dzfgwl8.png)
![\begin{gathered} square\text{ root both sides:} \\ √(105)\text{ = leg}_2 \\ Can^(\prime)t\text{ be reduced an further inradical form} \\ \\ leg_2\text{ = }√(105)\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qysafdt7qdvxnh6oly6v15zrupmnj8phzh.png)
Hence, the other leg is √105