Remember that the formula for a geometric sequence is:
![a_n=a_1\cdot r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/usnb6cvy5q0c41ojuruucgvjnfnf10g7si.png)
PART A:
With the data given, the formula for the sequence is:
![a_n=11_{}\cdot4^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/o1g6ts7rvdow1fc1cnkjvsbisbksmeo3dc.png)
PART B:
![\begin{gathered} a_1=11\cdot4^(1-1)\rightarrow a_1=11 \\ a_2=11\cdot4^(2-1)\rightarrow a_2=44 \\ a_3=11\cdot4^(3-1)\rightarrow a_3=176 \\ a_4=11\cdot4^(4-1)\rightarrow a_4=704 \\ a_5=11\cdot4^(5-1)\rightarrow a_5=2816 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ccvh4yg37p6r7pjzztdmvmogjz501zzrxk.png)
PART C:
For part A, we took the general formula for the geometric sequence and plugged in the first term and the common ratio provided.
For part B, we replaced n for all the numbers from 1 through 5 to get the first 5 terms of the sequence.