181k views
5 votes
Given the points A(-8,-7) and B(8,5) find the coordinates of point P on directed line segment AB that partitions AB into the ratio 3:1

User Aristotll
by
7.9k points

1 Answer

2 votes

Given the points A(-8,-7) and B(8,5) find the coordinates of point P on directed line segment AB that partitions AB into the ratio 3:1​

step 1

Find the distance in the x-coordinate between A and B

dABx=(8-(-8)=8+8=16 units

Find the distance in the y-coordinate between A and B

dABy=5-(-7)=5+7=12 units

step 2

we know that

point P on directed line segment AB that partitions AB into the ratio 3:1​

so

AP/AB=3/(3+1)

AP/AB=3/4

Find the x coordinate of point P

APx/ABx=3/4

substitute

APx/16=3/4

APx=16*(3/4)

APx=12 units

The x-coordinate of P is

Px=Ax+APx

where

Ax is the x-coordinate of P

Px=-8+12=4

step 3

Find the y-coordinate of P

we have that

APy/ABy=3/4

substitute

APy/12=3/4

APy=12*(3/4)

APy=9

The y coordinate of P is

Py=APy+Ay

where

Ay is the y-coordinate of P

Py=9+(-7)=2

therefore

the answer is

The coordinate of P are (4,2)

User Oliver Rice
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories