EXPLANATION
Given the function y=-2x^2 -12x -5
![\mathrm{The\: vertex\: of\: an\: up-down\: facing\: parabola\: of\: the\: form}\: y=ax^2+bx+c\: \mathrm{is}\: x_v=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/xnot3fo5k2oksev3dy1t1svsk98j77lwe0.png)
![\mathrm{The\: parabola\: params\: are\colon}](https://img.qammunity.org/2023/formulas/mathematics/college/rxnbbyaummeelpvr3r8zz31btw8u8l6pa0.png)
![a=-2,\: b=-12,\: c=-5](https://img.qammunity.org/2023/formulas/mathematics/college/buwxwp2yhgefruy6a1bl8dt64o3mqdect0.png)
![x_v=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/kcg8jhoehgrq4behgg4ohzwd4mmzcllet7.png)
![x_v=-(\left(-12\right))/(2\left(-2\right))](https://img.qammunity.org/2023/formulas/mathematics/college/8r4hbx9wtwklefoj4qvyj16zg417f9705g.png)
![\mathrm{Simplify}\colon](https://img.qammunity.org/2023/formulas/mathematics/college/pf5zvt798qk80jwyixb5wkww6a93uay913.png)
![x_v=-3](https://img.qammunity.org/2023/formulas/mathematics/college/64wj0daz1etpuhjr9fgdd3ftduypt8vy3i.png)
Plug in x_v=-3 to find the y_v value:
![y_v=-2\mleft(-3\mright)^2-12\mleft(-3\mright)-5](https://img.qammunity.org/2023/formulas/mathematics/college/chz523077n1m5gafblscxodrux7l2z7o8p.png)
Computing the powers and multiplying terms:
![y_v=-18+36-5](https://img.qammunity.org/2023/formulas/mathematics/college/dshkf1jja2ah2qzn49thkso47p4278l2eb.png)
Adding and subtracting numbers:
![y_{v\text{ }}=13](https://img.qammunity.org/2023/formulas/mathematics/college/nbrp91mcgca84bmqj4phxg62bqypvlku1x.png)
Therefore, the parabola vertex is:
(-3,13)
Now, we need to compute the y-intercept
![y\mathrm{-intercept\: is\: the\: point\: on\: the\: graph\: where\: }x=0](https://img.qammunity.org/2023/formulas/mathematics/college/n3rzboavmnh7no82m3rcm28qowosf2efsm.png)
![\mathrm{Apply\: rule}\: 0^a=0](https://img.qammunity.org/2023/formulas/mathematics/college/oq9i6kr84jyb9j439a40b14nrtlyjj6h1m.png)
![0^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/nh49m3ajoxivj0i4ajtfifbwd7prgkfy4w.png)
![y=-2\cdot\: 0-12\cdot\: 0-5](https://img.qammunity.org/2023/formulas/mathematics/college/te93sjx5jwjdniqk6yxmoz7odp5f2pppcz.png)
Multiplying numbers:
![y=-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/49njks2kl4v7di0m489rm5i4xohp6pw280.png)
The y-intercept is at (0,-5)
In conclusion, the graph of the function is as follows: