Answer:
The 99% confidence interval is
7.558 - 9.042
Step-by-step explanation:
The formula for the confidence interval is:
![Confidence\text{ }interval=\bar{X}\pm(\sigma)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/i48w0q4px0yprf9nv7rmli49nc8ifulmum.png)
Where:
X is the mean
σ is the standard deviation
z is the z-score for the confidence interval
n is the sample size.
Also, the interval has:
![Upper\text{ }limit=\bar{X}+(\sigma)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/kyi5iqym7lqns28int78ci06dt7hp0emxv.png)
![Lower\text{ }limit=\bar{X}-(\sigma)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/2jp72uo5atcx6s0dabng3pdgv7nkszcs3e.png)
Then, in this case,
The sample size is n = 64
The mean is X = 8.3
The z-score for a 99% confidence interval is z = 2.58
The standard deviation is σ = 2.3
Then:
![Lower\text{ }limit=8.3-2.58\cdot(2.3)/(√(64))=9.04175](https://img.qammunity.org/2023/formulas/mathematics/college/av1z30o8jaokoh9biewfl9pxpkqdefjm64.png)
![Upper\text{ }limit=8.3+2.58\cdot(2.3)/(√(64))=7.55825](https://img.qammunity.org/2023/formulas/mathematics/college/dcz3lzqtu3fv92oxbwe10ov77674dled9b.png)
Thus, the confidence interval, rounded to 3 decimals is
7.558 - 9.042