50.6k views
0 votes
Find the product of the complex numbers. Leave your answer in polar form

Find the product of the complex numbers. Leave your answer in polar form-example-1

1 Answer

6 votes

Given: Two complex numbers below


\begin{gathered} z_1=2+2i \\ z_2=-3+3i \end{gathered}

To Determine: The product of the given complex numbers


z_1z_2=(2+2i)(-3+3i)
\begin{gathered} z_1z_2=2(-3+3i)+2i(-3+3i) \\ z_1z_2=-6+6i-6i+6i^2 \\ z_1z_2=-6+6i^2 \end{gathered}

Please note that


\begin{gathered} i=\sqrt[]{-1} \\ i^2=(\sqrt[]{-1})^2_{} \\ i^2=-1 \end{gathered}

Therefore:


\begin{gathered} z_1z_2=-6+6i \\ z_1z_2=-6+6(-1) \\ z_1z_2=-6-6 \\ z_1z_2=-12+0i \end{gathered}

Let us convert the product to polar form

Please note that


\begin{gathered} if,z=x+iy,the\text{ polar form is} \\ z=r(\cos \theta+i\sin \theta) \\ \text{where} \\ r=\sqrt[]{x^2+y^2} \\ \tan \theta=(y)/(x) \\ \theta=tan^(-1)((y)/(x)) \end{gathered}

Apply the conversion into the product we got


\begin{gathered} z_1z_2=-12+0i,x=-12,y=0 \\ r=\sqrt[]{x^2+y^2}=\sqrt[]{(-12)^2+0^2} \\ r=\sqrt[]{144+0} \\ r=\sqrt[]{144} \\ r=12 \\ \theta=\tan ^(-1)((0)/(-12)) \\ \theta=\tan ^(-1)(0) \\ \theta=\pi \end{gathered}

Therefore:


\begin{gathered} z_1z_2=r(\cos \theta+i\sin \theta) \\ r=12,\theta=\pi \\ z_1z_2=12(\cos \pi+i\sin \pi) \end{gathered}

Hence, the product of the complex numbers in polar form is

12(cosπ+isinπ)

User Hetal Thaker
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories