Given: Two complex numbers below

To Determine: The product of the given complex numbers


Please note that
![\begin{gathered} i=\sqrt[]{-1} \\ i^2=(\sqrt[]{-1})^2_{} \\ i^2=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h36hlwxfajjh3a3idwt1407rfzxhdtpxkd.png)
Therefore:

Let us convert the product to polar form
Please note that
![\begin{gathered} if,z=x+iy,the\text{ polar form is} \\ z=r(\cos \theta+i\sin \theta) \\ \text{where} \\ r=\sqrt[]{x^2+y^2} \\ \tan \theta=(y)/(x) \\ \theta=tan^(-1)((y)/(x)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8t32sm9hpny3khirvj7qkb15ron6stnq29.png)
Apply the conversion into the product we got
![\begin{gathered} z_1z_2=-12+0i,x=-12,y=0 \\ r=\sqrt[]{x^2+y^2}=\sqrt[]{(-12)^2+0^2} \\ r=\sqrt[]{144+0} \\ r=\sqrt[]{144} \\ r=12 \\ \theta=\tan ^(-1)((0)/(-12)) \\ \theta=\tan ^(-1)(0) \\ \theta=\pi \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c9aq0talft20jpys77ptyegtt26manm61e.png)
Therefore:

Hence, the product of the complex numbers in polar form is
12(cosπ+isinπ)