Given:
• Vertical asymptote at : x = -1
,
• Double zero at: x = 2
,
• y-intercept at: (0, 2)
Let's create the equation for the rational function using the given properties.
Since the vertical asymptote is at x = -1, to find the deominator of the equation, equate the vertical asymptote to zero.
Add 1 to both sides:
![\begin{gathered} x+1=-1+1 \\ x+1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vldn7eym6o18d2yil7huugp6u33ak4t59i.png)
Therefore, the denominator of the function is ==> x + 1
Since it has a double zero at x = 2, we have the factors:
![\Longrightarrow(x-2)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/8movkylg4c1srq0t652qcjbi2dmufkgbgj.png)
We now have the equation:
![y=(a(x-2)(x-2))/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/yvr0dougk637xxm79lokfwwx8ctv3stm9b.png)
Also, the y-intercept is at: (0, 2)
To find the value o a, substitute 2 for y and 0 for x then evaluate:
![\begin{gathered} 2=(a(0-2)(0-2))/(0+1) \\ \\ 2=(a(-2)(-2))/(1) \\ \\ 4a=2 \\ \\ a=(2)/(4) \\ \\ a=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j3bahgxj5qh5b2xa1x6u7g9zcxwvv8q87t.png)
Therefore, the rational function is:
![y=((1)/(2)(x-2)(x-2))/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/14czju1s6dawk15a7sj66sc33zqwokdvtp.png)
ANSWER:
![y=((1)/(2)(x-2)(x-2))/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/14czju1s6dawk15a7sj66sc33zqwokdvtp.png)
![\begin{gathered} \text{Numerator: }(1)/(2)(x-2)(x-2) \\ \\ \\ \text{Denominator: (x + 1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m2533clmq9riysuhvmd050osyf9cxzv3ko.png)